Fundamentals and Advances in Power Integrity Analysis

Methods of Data Communication Systems

Ihsan Erdin

Distinguished Lecturer
Power path

VRM

TX

RX

Signal path

Return path
Power delivery network
Power Noise on 3.3V Supply
Logic Noise Margins

high

low
Receiver Eye Diagram
Analysis Parameters

\[V_{\text{noise}}(s) = Z_{\text{power}}(s) I_{\text{load}}(s) \]
Transient load current
PDN Characterization

Pin

Z_{\text{power}}

\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}
Planar Circuit Analysis
A Single Representative Port
\[Z_{\text{target}} \leq \frac{V_{\text{noise}}(s)}{I_{\text{load}}(s)} \]
Side view of a PCB
Self-resonance of decoupling caps

\[Z_c = R + sL + \frac{1}{sC} \]
\[Z_{in}(s) = Z_{11}(s) - \frac{Z_{12}^2(s)}{Z_{22}(s) + Z_C(s)} \]

Impedance Increases with Spacing

Planar structure with infinite extension

\[Z_{ij} = \frac{s \mu d}{\beta 2\pi r_i} \frac{H_0^{(2)}(\beta |r_i - r_j|) J_0(\beta r_j)}{H_1^{(2)}(\beta r_i)} \]
Practical Case
Objective Function for Optimization

\[
\bar{Z}_{in}(s) = \frac{1}{n_p} \sum_{k=1}^{n_p} Z_{in_k}(s)
\]
Relations for Multi-pin and capacitor configuration

\[
Z = \begin{bmatrix}
Z_{n_p \times n_p} & Z_{n_p \times n_c} \\
Z_{n_c \times n_p} & Z_{n_c \times n_c}
\end{bmatrix}
\]

\[
Z_{in} = z_{pp} - Z_{pm} \left[Z_m + Z_c \right]^{-1} Z_{mp}
\]
24 power pin BGA with 18 caps
Total required capacitance 9uF
Required Total Capacitance

\[C_{\text{total}} = \frac{I_{\text{load}}(s)}{sV_{\text{noise}}(s)} \]
Initial/Optimal Placement of 18 Capacitors for 24 Pins

Cap Value = 1\mu F

June 2019
All 18 optimized 1μF capacitors are inside BGA Pinfield
Initial/Optimized Placement of 18 Capacitors for 24 Pins

Cap Value = 380 nF

June 2019
Half of optimized 380nF capacitors are inside BGA Pinfield

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10^{-2}</td>
<td>10^{-1}</td>
<td>10^2</td>
</tr>
</tbody>
</table>

June 2019