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Design Compliance
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EMC Requirements and Key Design Considerations
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Discharge

Bulk Current 
Injection

• Grounding

• Transition Times

• Filter Design

• Filter Layout

• SMPS Layout

• Decoupling

• EMC Ground 

• Transition Times

• Filtered I/O

• Adequate 
Decoupling

• Balance Control

• Current Return

• HF Current Path

• LF Current Path

• Chassis GND 

• Filtered I/O

• Transient Protection

• Bandwidth Control

• Arc Management

• Bandwidth Control

• LF Current Path

• HF Current Path

• Chassis GND 

• Filtered I/O

• Transient Protection

• 1 HF GND

• HF Current Path

• Chassis GND

• Filtered I/O

• Identify Key Circuits

• Bandwidth Control

Designing a product that is guaranteed to meet all these requirements is relatively straight-forward.
Fixing a non-compliant product can be difficult and costly.

Radiated
Immunity

• EMC Ground

• Chassis GND

• Filtered I/O

• Balance Control

• Bandwidth Control

• Key Circuit Layout
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What People Who Guarantee First-pass Compliance Are NOT Doing

NOT Relying on EMC Design Guidelines

 Rules that work well in some designs can be 
completely inappropriate for other designs. 

 Complying with a long list of EMC design rules is 
a terrible way to do a board layout.

 Many rules widely published in books, app 
notes, and data sheets are NEVER appropriate.

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance 4

What People Who Guarantee First-pass Compliance Are NOT Doing

NOT Modeling Products with Numerical EM Modeling Codes

Numerical EM modeling codes give precise answers 
to precisely defined problems. EMC geometries are 
not well-defined.

We don’t want to know how much a given 
configuration will radiate. The answer to that 
question depends on a lot of factors that we have 
no control over. 

We want to know if our product will meet its 
requirements. 
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What People Who Guarantee First-pass Compliance ARE Doing!

SOURCE ANTENNA

Identifying and evaluating all possible sources, victims and coupling paths
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What People Who Guarantee First-pass Compliance ARE Doing!

Identifying and evaluating all possible sources, victims and coupling paths

SOURCE
PORT

VICTIM
CIRCUIT
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Why Design for First-Pass Compliance?

 Better product reliability

 Faster product development

 Lower product cost

Why not build and test a prototype to see what EMC fixes are necessary?

Designing for first-pass compliance results in
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Keys to PCB Design for EMC Compliance

 Don’t rely on EMC Design Guidelines

 Be familiar with currents and current paths

 Learn to recognize EMI sources

 Learn to recognize antennas / ports

 Be aware of fundamental EMI radiation mechanisms

 Quantify the coupling!!!
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Is an Isolated 
Current 
Return 

Required?

Reasons for Isolating a Current Return
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 Safety

 To Avoid Common-Impedance Coupling

 Currents backed by voltage >48 volts cannot flow on easily reached conductors.

 Current-return conductors cannot be labeled “ground”.

 Common-Impedance coupling occurs between circuits that share return conductors.

 Unfortunately, these current-return conductors are often labeled “ground”.
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Is an Isolated Ground Required?
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PHYM
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0.1 F Capacitor

1M  Resistor

0.1 F Capacitor

USB
CONTROLLER

Chassis
Ground Digital Ground

DIGITAL
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ANALOG
CIRCUITS

ANALOG
GROUND 

PLANE

DIGITAL
GROUND 

PLANE

SYSTEM
STAR

GROUND

AGND DGND

DIGITAL
SUPPLY
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MIXED
SIGNAL
DEVICE

STM32F407
32-Bit ARM Microcontroller

Why would a designer isolate an analog return?
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There is only one valid reason to isolate current returns!

To prevent low-frequency (kHz or lower) common-impedance coupling.

D/A
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Quantifying Maximum Common-Impedance Coupling

(worst-case) (worst-case) (worst-case)
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Do these returns need to be isolated?

Can these signals share the same ground plane?

Actuator: 12 Volts, 10 Amps peak

Digital Signal: 3.3 Volts

Ground plane is half-ounce copper

15 cm

10 cm

YES!

End-to-End resistance of board: 0.86 m

Voltage induced by common-impedance coupling: < 8.6 mV

Don’t

Split

Ground

Planes!

Don’t gap the plane!

Don’t neglect E-field 
coupling!
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Don’t gap the ground plane!!!
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In rare situations where isolated low-frequency returns are required,
route the isolated return on a different layer over the ground plane.

Digital RTN

Digital RTN

Analog RTN

ONE VIA
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Quantifying Common-Impedance Coupling

Maximum common impedance coupling is easy to quantify!

 Perform this calculation when you suspect conducted coupling will be an issue.

 ALWAYS perform this calculation before isolating signal returns labeled “ground”!

(worst-case) (worst-case) (worst-case)

NOTE:
Use Rshared, not Lshared or 1/Cshared. 
Those values indicate magnetic- or 
electric-field coupling.  
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How Strong is 
this Noise 
Source?

PP
N

0.45V
Nth Harmonic Amplitude:   V =

N

How Strong is this Digital Clock Source?
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A

T

… …

tr 
f1/tr1/

2A
T

 
 

 

1

r

n
r

0
rms max

r

0
2

r

1Fundamental Frequency:   f
T

n tsinnsin T2A THarmonic Amplitude (rms):   2 c
T n n t

T T

2A 1when f
T

f2A 1 1Envelope Amplitude (rms): V f f
f t

f2A 1 when f
f t f





     
  
 
 





 
      

  
  

    r

1
t








 



1 PPFundamental Amplitude:   V =0.45 V

PP
N

0.45 V
Nth Harmonic Amplitude:   V =

N
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How Strong is this Power Switching Source?
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… …

3.3 V

1.25 MHz SWF

4 s 8 s2 s 6 s

tr = tf = 0.8 ns

 1Fundamental Amplitude:   V =0.45 3.3 1.5 V

N

1.5 V
100th Harmonic Amplitude:   V = 15 mV

100


r

1 400 MHz
t




If max allowed is 100 V, then 
max coupling allowed is:

100 V
20log 44 dB

15 mV
 

  
 

20

Effect of Pulse Width on Frequency Content

50% Duty Cycle

10% Duty Cycle 1% Duty Cycle

90% Duty Cycle

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance
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Basic Calculations
Noise Voltage from a Switch-Mode Power Supply

Determine the worst-case voltage on the switching voltage node of a buck converter (Vin = 12 V, Vout = 5 V, FSW = 2 MHz, tr = 1.2 ns, minimum duty 
cycle = 20%). Determine the amplitude of the harmonics at 30 MHz and 300 MHz.

@30 MHz: 

@300 MHz: 

   0
max

2 12f 2 MHz2AV f 360 mV
f 30 MHz

  
        

   
  

0
max 2 2 9 6

r

2 12f2A 1 2 1V f 32 mV
f t f 300 1.2 10 300 10

                     

 

  
 
         
          

0
max

r

0
2

r r

2A 1when f
T

f2A 1 1V f f
f t

f2A 1 1when f
f t f t

 9
r

1 1 265 MHz
t 1.2 10
 

  

L

VIN
CIN COUT

VOUT

Switching Voltage Node

IC Pins as Sources
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1 PPFundamental Amplitude:   V =0.45 V

PP
N

0.45 V
Nth Harmonic Amplitude:   V =

N

Treat every pin as if it were the source of 
the IC’s internal clocks.
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Analog Sources
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The amplitude and bandwidth of analog sources is generally well-known.
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Single-ended vs. Differential Signaling

Single-ended

Differential

Pseudo-Differential

 Unbalanced
 Currents return on “ground”
 Requires N+1 conductors
 Inexpensive parts

 Balanced
 No signal current on ground
 Requires 2N conductors
 Requires balun

 Nominally Balanced
 Nominally no HF current on ground
 Always has a CM voltage component!!
 Requires 2N conductors
 No balun required
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How much 
common-mode 

voltage is 
acceptable?

CM

CM

 V 1mV

 V 100 V 

CISPR 32:

Automotive:
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Identifying Antennas

/4

/2

Half-Wave Dipole
Great Antenna

What makes an efficient antenna?

Quarter-Wave Monopole
Great Antenna

Average radiated power required to exceed 
FCC Class B Limit:

 

2
2

rad
0

2 2

E 2 rP
D

100μV/m 2 3 m
377 1.6

1nW












Voltage driving a resonant monopole required 
to exceed FCC Class B Limit:

  
rad radV P R

1nW 36

0.19 mV



 



Imax = 5.3 A
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Identifying Antennas

Good Antenna Parts Poor Antenna Parts

<100 MHz >100 MHz <100 MHz >100 MHz

Cables

Metal Chassis 
or Enclosure

Tall 
Components 
or Heatsinks

Seams in 
shielding 

enclosures

Sparsely 
populated 

power planes

Integrated 
Circuits

Microstrip or 
stripline 
traces

Anything that 
is not big

Integrated 
Circuits

Microstrip or 
stripline 
traces

Free-space wavelength at 100 MHz is 3 meters

Converting VCM to CISPR 32 Maximum Radiated Emissions
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 
 

CM rad rad

rad

0

V P R

2 R
E r

D

2 36
E r

377 1.6

0.612 E r



 
  

 

  
    


CM (in microvolts) (in microvolts/meter)V 1.9 E

At a 3-meter test distance:

CM [in dB( V)] [in dB( V/m)] (meters)V E 5.3 dB  

But the vertical cable length is only 1 meter, so 
below 75 MHz the max radiated field is weaker.

  
2

cable factor 20log sin


  



S. Deng, T. Hubing and D. Beetner, “Estimating Maximum Radiated Emissions from Printed Circuit Boards with an Attached Cable,” IEEE Trans. on Electromagnetic 
Compatibility, vol. 50, no. 1, Feb. 2008, pp. 215-218.

C. Su and T. Hubing, “Improvements to a method for estimating the maximum radiated emissions from PCBs with cables,” IEEE Trans. on Electromagnetic 
Compatibility, vol. 53, no. 4, Nov. 2011, pp. 1087-1091.
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Transfer Function relating VCM to Max ERAD
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Transfer 
Function

in
dB(meters)

Frequency in MHz

For example:

If Max Radiated Emissions are

40 dB(V/m) @ 80 MHz,

then max VCM is:

40 dB(V/m) +  8 dB(meters)

= 48 dB(V) 

Max E-field plus 
this TF is max VCM

Max VCM to reach CISPR 32 Radiated Emission Limit
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Max VCM

in 

dB(V)

Frequency in MHz

For example:

Max Radiated Emissions are

40 dB(V/m) @ 80 MHz,

then max VCM is:

40 dB(V/m) +  8 dB(meters)

= 48 dB(V) 
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Max VCM to reach CISPR 25 Radiated Emission Limit
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5 cm

Total arc = 157 cm

Wire to table = 5 cm

Rest of field line = 152 cm

Field strength of arc: VCM/1.52 m or TF = 3.6 dB(m) – low estimate

Using current distribution on plane: TF = 2.9 or 9.4 dB(m)

100 cm

5.7o

   40 dB μV 24 dB μV/m

 TF 16 dB m

There is no good way to calculate this, 
because the voltage driving the harness is 
the source, but the radiating element 
depends on the test set-up.

One method:

Another method:

LearnEMC 2023
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Do I need to 
match this 

Transmission 
Line?

r PDt 2 t
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Remember!

 Don’t use matched terminations and controlled impedance traces unless you 
are forced to!

 by a signal specification (e.g., CAN, USB, HDMI)

 by need to send very high-speed signals long distances (e.g., 100 Mbps > 10 cm)

 Instead, control ALL transition times so that tr > 2 * tPD.
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Maximum 
Crosstalk 
Between

Two Traces?
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Crosstalk in Transmission Lines

 Crosstalk in Electrically Short Transmission Lines
 Common-Impedance Coupling
 Electric-Field Coupling
 Magnetic-Field Coupling

 Crosstalk in Electrically Long Matched Transmission Lines

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance

36

Definition of Crosstalk

Merriam-Webster: unwanted signals in a communication channel (as in a telephone, radio, or 
computer) caused by transference of energy from another circuit (as by leakage or coupling)

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance
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Crosstalk in Electrically Short Transmission Lines

G L2
FE

L1 S2 L2

3

6

R R
XTALK 20 log

R R R

3.7 10 5020 log
50 50 50

20 log 36.7 10

89 dB





  
   

   
  

     
   

 

  
3

G 7 6

0.204 m
R 3.7 10

A 5.7 10 S/m 0.056 m 17.4 10 m



    
   


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Crosstalk in Electrically Short Transmission Lines

 
     

10 MHz S2 L2 12

7 12

3

XTALK 20 log R R C

20 log 2 10 Hz 50 50 2.84 10 F

20 log 4.46 10

47 dB





   
      
   

 

Note: At 10 kHz, XTALK would be 60 dB lower. Common 
impedance coupling would dominate.
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Crosstalk in Electrically Short Transmission Lines

  

12 L2
10 MHz

L1 S2 L2

7 9

2

L R
XTALK 20 log

R R R

2 10 Hz 16.4 10 H 50 Ω
20 log

50 Ω 50 Ω 50 Ω

20 log 1.03 10

39.7 dB





   
         

              
   

 
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Crosstalk in Electrically Short Transmission Lines
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Crosstalk in Electrically Short Transmission Lines
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Crosstalk in Longer Transmission Lines

 First null in near-end crosstalk occurs when line is one half-wavelength long

 S2 L2 12 j
SIG2 1

2
NE

R R C
V 1

2
V e 
 
  
  


 S2 L2 12 j

SIG2 1FE

R R C
V V e 1

 
  
  



12

11

C
for matched case

2C
 
 
 
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Crosstalk in Longer Transmission Lines

 Total-Field Coupling, frequency domain

V1

RS1

RL1

+
VSIG1

-
RL2

+

VFE

-

+

VNE

-
RS2

C12

 Far-end E-field and H-field coupling 
are equal and 180o out of phase.

 Near-end E-field and H-field 
coupling are equal and in phase.

For matched transmission lines in a 
homogeneous dielectric,

12 12

11 11

C L
for matched case

C L
   

   
   

LTSpice Simulations

Matched at both ends RS1 = 1  RS2 = 1 
Far End

Near End

Far End

Far 
End

Near End

Near End
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LTSpice Simulations

Matched at both ends

RS2 = RL2 = 5 k

Far End

Near End

Far End

Far End
Near End

Near End

RL2 = 5 k

Weak coupling assumption violated.
Floating trace rings.

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance 45

Maximum Trace-to-Trace Crosstalk Estimates Based on Current Density
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  1 1total
S

I 2x w 2x wJ x tan tan
w 2h 2h

      
          

 normJ 5.5h 30 dB 

 normJ 7.5h 35 dB 

 normJ 6h 31dB 

The Current Density on 
a Plane Below A 
Microstrip Trace
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Differential-Mode
to

Common-Mode 
Conversion

CM DMV h V (x)  
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Common-mode and Differential-mode Current

I1 = 3 Amps

I2 = 5 Amps

1 DM CM

2 DM CM

I I hI
I I (1 h)I
 
   

DM
DM

DM

V
I

Z
AND

 DM 1 2

CM 1 2

I 1 h I hI
I I I

  

 

General Definition

1 2
DM

CM 1 2

I I
I

2
I I I




 

For Balanced Pairs

IDM = 1 Amp
ICM = 8 Amps
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The Imbalance Difference Model

=

+

~

~

~

1CMI

2CMI

leftCMI _1

leftCMI _2

rightCMI _1

rightCMI _2

totalCMI _

DMI

DMI

LZ

LZ

SZ

DMC VhV 
1h 2h

SV

SZ

SV



DMV

totalCMI _

0 10 20 30 40 50 60 70 80 90 100
0
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30
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Location (cm)

|I C
M

| (
μ

A
)

 

 

Full wave ( Mismatching)
IDM ( Mismatching)
Equivalent dipole antenna  (Mismatching)
Full wave ( Matching)
IDM (Matching)
Equivalent dipole antenna  (Matching)

CM DMV h V (x)  

LearnEMC 2023 Simple Calculations Anyone Can Do to Help Ensure EMC Design Compliance 50

Driving a Ribbon Cable

Imbalance difference modeling accurately determines the common-mode voltage driving a cable due to 
changes in electrical balance. 

Single-ended sources should use unbalanced transmission lines and unbalanced terminations!
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Electric Field 
Coupling

rec max antenna incV L E 
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Quantifying Electric Field Coupling

+
Vrec

-

incE 10 V/m @ 100 MHz


For matched resonant dipole:

 
 



2

2
e

3
A 1.64 1.17 m

4

 


2

2
rec

10 V/m
0.26 W/m

377
P

   
  

 

   

2 2
rec

rec rec

P 0.26 W/m 1.17 m 1 0.30 W

V RP 72 0.30 W 4.7 V

Useful Approximate Solution:

 rec max antenna incV L E

   rec maxV 1.5 m 10 V/m 15 V

Note: The open-circuit voltage would be 
approximately twice this value or 10 volts.

Electric Field Coupling
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Basic Calculations
H-field Coupling from Plane Wave to Electrically Small Circuit

The magnetic field from a 100 V/m plane wave couples to a 3-cm dipole op-amp circuit. Modeling the input to the op-amp as an 
infinite impedance, calculate the maximum voltage developed across the input.

1 cm

1.5 cm
|E| = 100 V/m @ 100 MHz

   rec maxV 0.015 m 100 V/m 1.5 V  
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Magnetic Field 
Coupling

 loop 0
dV 2 f H loop area
dt


      
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Quantifying Magnetic Field Coupling

Magnetic Field Coupling




 

load
rec loop

loop

load
loop

load loop

R
V V

Z

R
V

R j L

 


 I ˆH
2 r

Current Iflowing in a wire

+
Vrec

-

 




 

   

loop

0

dV
dt

2 f H loop area

For a 3 cm x 3 cm loop located 10 cm from a 1-amp 
current @ 20 kHz:

 
  



 1A
H 1.6 A/m

2 0.1m

 
    

  

   



loop 0

24 7

V 2 f H loop area

2 2 10 Hz 4 10 H/m 1.6 A/m 0.03 m

230μV
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Basic Calculations
H-field Coupling from Plane Wave to Electrically Small Circuit

The magnetic field from a 100 V/m plane wave couples to a 3 cm x 1 cm op-amp circuit. Modeling the input to the op-amp as an 
infinite impedance, calculate the maximum voltage developed across the input.

3 cm

1 cm|E| = 100 V/m @ 100 MHz

0

E 100 V/m
H 0.265 A/m

377
  
 




    

loop

0

6 7 2

V

H A

2 100 10 Hz 4 10 H/m 0.265A/m 0.03 0.01m

 

 

    

 63 mV
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Summary

Summary
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 Maximum emissions and maximum coupled 
interference voltages can always be 
calculated.

 The preciseness and usefulness of these 
calculations depends on the quality of the 
information provided.

 Relatively simple calculations can take a lot 
of the guesswork out of product design for 
guaranteed compliance.


